预购商品
书目分类
特别推荐
第1章 線性代數緒論 1-1 線性代數的內容 1-2 線性代數的範疇 1-3 純量、向量、矩陣與八元數的緣起 1-4 向量與矩陣的關係 1-5 線性代數的基本元素 1-5-1 維度初探 1-5-2 向量 1-5-3 矩陣 1-5-4 向量空間 1-6 向量的維度、矩陣的維度與向量空間的維度 1-7 增廣矩陣法 1-8 線性代數的架構 第2章 向量與矩陣 2-1 向量和矩陣 2-1-1 向量的運算 2-1-2 矩陣的運算 2-1-3 矩陣和向量的乘法運算 2-1-4 矩陣分區 2-1-5 向量與向量的乘積 2-1-6 外積與線性映射 2-1-7 矩陣與向量的乘積 2-1-8 矩陣與矩陣的乘積 2-2 矩陣相乘的四種圖像 2-3 矩陣的跡 2-4 基本矩陣 2-5 逆矩陣和逆置操作 2-6 逆矩陣的幾何解釋 2-7 轉置操作 2-8 置換矩陣 2-9 對稱矩陣 2-9-1 對稱矩陣的特性 2-9-2 斜對稱矩陣(Skew symmetric matrix)的特性 2-9-3 建構對稱矩陣的方法 2-10 正交矩陣與正交歸一矩陣 2-10-1 正交矩陣 2-10-2 正交矩陣的特性 2-10-3 正交轉換的特性 2-10-4 對稱矩陣正交對角化的演算 2-11 Hermitian矩陣 2-12 么正矩陣 2-13 冪零矩陣 2-14 冪等矩陣 2-15 正規矩陣 第3章 解線性方程式的基礎 3-1 樞軸變數與自由變數 3-2 梯形矩陣、列梯矩陣和最簡列梯矩陣 3-2-1 梯形矩陣 3-2-2 列梯矩陣 3-2-3 最簡列梯矩陣 3-3 列簡化法 3-4 樞軸變數與自由變數 3-5 矩陣的LU分解與求解方程式 3-5-1 主子式 3-5-2 矩陣的LU分解 3-5-3 A = LU和PA = LU 3-5-4 LU分解的演算法 第4章 線性方程組 4-1 線性代數的幾何原理 4-1-1 向量的幾何圖像 4-1-2 線性方程組的幾何圖像 4-2 線性幾何和線性方程組 4-2-1 線性空間的交點 4-2-2 向量的線性組合 4-3 線性聯立方程組的四種圖像 4-4 矩陣方程組的解 4-5 解線性方程組的方法 4-5-1 後向替代法 4-5-2 求解線性方程組──LU分解 4-5-3 求解線性方程組──Gauss-Jordan消去法 4-6 最簡列梯矩陣與線性方程組的完整解 4-7 一致的方程組與不一致的方程組 4-8 方程組解和矩陣表示的關係 第5章 向量空間 5-1 向量空間與向量子空間 5-2 函數和向量的關係 5-3 向量子空間的交集與聯集 5-4 矩陣的四個基本向量子空間 5-5 向量子空間的維度 5-6 四個基本向量子空間基底向量的定義 5-6-1 由定義求四個基本向量子空間 5-6-2 以圖像法求四個向量子空間 5-6-3 以增廣矩陣法求四個向量子空間 5-7 對偶空間 5-8 正交補餘 第6章 線性轉換與投影 6-1 線性轉換 6-2 線性變換與矩陣 6-3 矩陣變換的幾何意義 6-4 平面的線性變換的幾何學 6-5 齊次座標 6-6 正交投影 6-7 Gram-Schmidt 過程 6-8 投影矩陣 6-8-1 正交投影矩陣 6-8-2 投影矩陣的表示式 6-8-3 有序基底 6-9 改變基底向量的效應 6-9-1 基底變化對向量表示的影響 6-9-2 基底變化對線性轉換矩陣表示的影響 6-10 基底變化對線性算符矩陣的影響 6-11 QR 分解 6-11-1 QR分解與求解方程式 6-11-2 矩陣的QR分解 6-11-3 矩陣A行向量是獨立的 6-11-4 矩陣A行向量不是獨立的 6-11-5 完整的QR分解 第7章 行列式 7-1 行列式的定義 7-2 行列式的計算 7-3 行列式的性質 7-4 三個計算行列式值的方法 7-4-1 行列式的樞軸法 7-4-2 行列式的置換展開 7-4-3 行列式的餘因數法 7-5 行列式和幾何學 7-6 Cramer 規則 7-7 非齊次方程式和參數變化法 第8章 本徵值與本徵向量 8-1 本徵值與本徵向量 8-2 本徵值和本徵向量的幾何意義 8-3 幾何重根數與代數重根數 8-4 本徵值的三個性質 8-5 矩陣對角化 8-6 相似轉換的重要特性 8-7 矩陣的平方根 8-8 矩陣可以被對角化的條件 第9章 正定矩陣與應用 9-1 範數 9-2 波譜分解 9-3 二次形式 9-4 二次形式的矩陣的基底轉換規則 9-5 主軸理論 9-6 主軸的幾何學觀點 9-7 正定矩陣 9-8 Cholesky分解 9-9 多變數梯度 9-9-1 Rayleigh商的極值 9-9-2 極大化極小原理與極小化極大原理 第10章 不變子空間 10-1 不變子空間 10-2 廣義本徵向量初探 10-3 塊狀三角形矩陣或塊狀對角矩陣的演算法 10-4 不變子空間的圖像概念 10-5 不變子空間的定義 10-6 不變子空間的基底向量 10-7 幾個重要的例子 10-8 塊狀三角形矩陣 10-9 由線性獨立向量延伸出一組基底的方法 10-10 對角區塊形式與不變子空間的直和 第11章 Jordan標準式 11-1 複數與實數的差異 11-2 向量空間的實數化和複數化 11-2-1 複數 11-2-2 複數向量 11-2-3 複數向量空間 11-2-4 複數向量矩陣的共軛 11-2-5 複數向量矩陣 11-2-6 複數線性轉換 11-3 實數矩陣的複數可對角化與複數不可對角化 11-3-1 複數可對角化的實數矩陣 11-3-2 複數不可對角化的實數矩陣 11-4 複數本徵值的動力學 11-4-1 複矩陣與複數的類同 11-4-2 一個具有複數本徵值的(2 × 2)矩陣的動力學過程 11-5 Jordan分解 11-6 Jordan形式的矩陣理論基礎 11-6-1 行空間、零核空間與Jordan標準基底 11-6-2 Jordan點圖 11-7 Jordan標準形式初探 11-8 廣義本徵向量 11-9 廣義本徵向量鏈 11-10 方陣和Jordan標準形式的關係 11-11 Jordan標準形式的演算法 11-12 點圖與Jordan基底向量 11-12-1 上面對齊的Jordan點圖寬度和長度的方式 11-12-2 下面對齊的Jordan點圖寬度和長度的方式 11-13 Jordan標準形式的演練 11-14 Jordan形式的次冪運算 第12章 奇異值分解 12-1 奇異值分解的直覺定義 12-2 SVD的演算法 12-3 奇異值分解的演算與應用 12-4 SVD和四個基本子空間 12-5 奇異值分解的原理 12-6 極分解 12-6-1 右/左極分解 12-7 廣義逆矩陣 12-8 左逆矩陣和右逆矩陣、廣義逆矩陣 12-8-1 左逆矩陣 12-8-2 右逆矩陣 12-8-3 廣義逆矩陣與四個基本向量子空間 12-9 廣義線性模型 12-9-1 簡單回歸和多元回歸 12-9-2 線性最小方乘法問題的一般解 12-9-3 最小範數解和最小平方誤差問題 12-9-4 不完全確定方程組和過度確定的方程組 參考資料 索引
最近浏览商品
客服公告
热门活动
订阅电子报