|
非交換幾何、規範理論和重整化--一般簡介與非交換量子場論的重整化(英文)
|
|
|
|
|
|
|
|
|
ISBN |
9787560396514 |
定价 |
RMB78.00 |
售价 |
RM85.80 |
优惠价 |
RM64.35 * (-25%)
|
作者 |
(法)阿克塞爾·德·古薩克
|
出版社 |
哈爾濱工業大學出版社
|
出版日期 |
2021-09-01 |
装订 |
平裝. 無. 231 页. 19. |
库存量 |
海外库存 下单时可选择“空运”或“海运”(空运和海运需独立下单)。空运费每本书/CD是RM22.50。 空运需时8-11个工作天,海运需时约30个工作天。 (以上预计时间不包括出版社调货的时间以及尚未出版的预购商品) |
|
我要订购 有现货时通知我 |
|
放入下次购买清单 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
購買中國簡體書籍請注意:
1. 因裝幀品質及貨運條件未臻完善,中國簡體書可能有出現磨痕、凹痕、折痕等問題,故簡體字館除封面破損、內頁脫落、缺頁等較嚴重的狀態外,其餘所有商品將正常出貨。
|
|
|
|
|
|
|
|
|
目錄
Introduction
1 Introduction to Noncommutative Geometry
1.1 Topology and C*-algebras
1.1.1 Definitions
1.1.2 Spectral theory
1.1.3 Duality in tile commutative case
1.1.4 GNS construction
1.1.5 Vector bundles and projective modules
1.2 Measure theory and yon Neumann algebras
1.2.1 Definition of von Neumann algebras
1.2.2 Duality in the commutative case
1.3 Noncommutative differential geometry
1.3.1 Algebraic geometry
1.3.2 Differential calculi
1.3.3 Hochschild and cyclic homologies
1.3.4 Spectral triples
2 Epsilon-graded algebras noncommutative geometry
2.1 General theory of the ε-graded algebras
2.1.1 Commutation factors and multipliers
2.1.2 Definition of ε-graded algebras and properties
2.1.3 Relationship with superalgebras
2.2 Noncommutative ε-graded geometry
2.2.1 Differential calculus
2.2.2 ε-connections and gauge transformations
2.2.3 Involutions
2.3 Application to some examples of ε-graded algebras
2.3.1 ε-graded commutative algebras
2.3.2 ε-graded matrix algebras with elementary grading
2.3.3 ε-graded matrix algebras with fine grading
3 An Introduction to Renormalization of QFT
3.1 Renormalization of scalar theories in the wilsonian approach
3.1.1 Scalar field theory
3.1.2 Effective action and equation of the renormalization grour
3.1.3 Renormalization of the usual ψ4 theory in four dimensions
3.2 BPHZ renormalization
3.2.1 Power-counting
3.2.2 BPHZ subtraction scheme
3.2.3 Beta functions
3.3 Renormalization of gauge theories
3.3.1 Classical theory and BRS formalism
3.3.2 Algebraic renormalization
4 QFT on Moyal space
4.1 Presentation of the Moyal space
4.1.1 Deformation quantization
4.1.2 The Moyal product on Schwartz functions
4.1.3 The matrix basis
4.1.4 The Moyal algebra
4.1.5 The symplectic Fourier transformation
4.2 UV/IR m/x.ing on the Moyal space
4.3 Renormalizable QFT on Moyal space
4.3.1 Renormalization of the theory with harmonic term
4.3.2 Principal properties
4.3.3 Vacuum configurations
4.3.4 Possible spontaneous symmetry breaking?
4.3.5 Other renormalizable QFT on Moyal space
5 Gauge theory on the Moyal space
5.1 Definition of gauge theory
5.1.1 Gauge theory associated to standard differential calculus
5.1.2 U(N) versus U(1) gauge theory
5.1.3 UV/IR mixing in gauge theory
5.2 The effective action
5.2.1 Minimal coupling
5.2.2 Computation of the effective action
5.2.3 Discussion on the effective action
5.3 Properties of the effective action
5.3.1 Symmetries of vacuum configurations
5.3.2 Equation of motion
5.3.3 Solutions of the equation of motion
5.3.4 Minima of the action
5.3.5 Extension in higher dimensions
5.4 Interpretation of the effective action
5.4.1 A superalgebra constructed from Moyal space
5.4.2 Differential calculus and scalar theory
5.4.3 Graded connections and gauge theory
5.4.4 Discussion and interpretation
Conclusion
Bibliography
編輯手記 |
|
|
|
|
|
|
|
|
|
|
|