预购商品
书目分类
特别推荐
《數學女孩》系列以小說的形式展開,重點描述一群年輕人探尋數學之美的過程。內容由淺入深,數學講解部分十分精妙,被稱為“絕贊的數學科普書”。《數學女孩6:龐加萊猜想》以百年數學難題“龐加萊猜想”為主題,從柯斯堡七橋問題入手,詳細講解了拓撲學、非歐幾何、流形、微分方程、高斯絕妙定理和傅裡葉展開式等數學知識,還原了龐加萊猜想的探索歷程,帶領讀者一同追尋“宇宙的形狀”。整本書一氣呵成,非常適合對數學感興趣的初高中生以及成人閱讀。
序言 第1章 柯尼斯堡七橋問題 1 1.1 尤裡 1 1.2 一筆劃問題 2 1.3 從簡單的圖開始 7 1.4 圖與次數 11 1.5 這也是數學嗎 15 1.6 逆定理的證明 18 第2章 默比烏斯帶和克萊因瓶 35 2.1 樓頂 35 2.1.1 泰朵拉 35 2.1.2 默比烏斯帶 36 2.2 教室 39 2.3 圖書室 40 2.3.1 米爾嘉 40 2.3.2 分類 43 2.3.3 閉曲面的分類 45 2.3.4 可定向曲面 46 2.3.5 不可定向曲面 49 2.3.6 展開圖 51 2.3.7 連通和 63 2.4 歸途 72 第3章 泰朵拉的身邊 75 3.1 家人的身邊 75 3.2 0 的附近 77 3.2.1 練習 77 3.2.2 全等與相似 81 3.2.3 對應關係 84 3.3 實數a的附近 86 3.3.1 全等、相似、同胚 86 3.3.2 連續函數 88 3.4 點a的附近 94 3.4.1 前往異世界的準備 94 3.4.2 距離的世界:實數a 的δ 鄰域 95 3.4.3 距離的世界:開集 96 3.4.4 距離的世界:開集的性質 98 3.4.5 旅程:從距離的世界到拓撲的世界 101 3.4.6 拓撲的世界:開集公理 103 3.4.7 拓撲的世界:開鄰域 106 3.4.8 拓撲的世界:連續映射 108 3.4.9 同胚映射 115 3.4.10 不變性 116 3.5 泰朵拉的身邊 117 第4章 非歐幾何 123 4.1 球面幾何 123 4.2 現在和未來之間 130 4.3 雙曲幾何 131 4.3.1 所謂的“學習” 131 4.3.2 非歐幾何 132 4.3.3 鮑耶與羅巴切夫斯基 137 4.3.4 自己家 141 4.4 跳出畢氏定理 142 4.4.1 理紗 142 4.4.2 距離的定義 143 4.4.3 龐加萊圓盤模型 145 4.4.4 半平面模型 152 4.5 超越平行公理 153 4.6 自己家 156 第5章 跳入流形 159 5.1 跳出日常 159 5.1.1 輪到我了 159 5.1.2 為了打倒惡龍 160 5.1.3 尤裡的疑問 161 5.1.4 考慮低維的情況 162 5.1.5 會歪成什麼樣子呢 168 5.2 跳入非日常 174 5.2.1 櫻花樹下 174 5.2.2 內外翻轉 175 5.2.3 展開圖 177 5.2.4 龐加萊猜想 182 5.2.5 二維球面 183 5.2.6 三維球面 185 5.3 要跳入,還是跳出 187 5.3.1 醒過來時 187 5.3.2 Eulerians 188 第6章 捕捉看不到的形狀 193 6.1 捕捉形狀 193 6.1.1 沉默的形狀 193 6.1.2 問題的形狀 195 6.1.3 發現 197 6.2 用群來捕捉形狀 199 6.2.1 以數為線索 199 6.2.2 線索是什麼 204 6.3 用自環來捕捉形狀 206 6.3.1 自環 206 6.3.2 自環上的同倫 210 6.3.3 同倫類 213 6.3.4 同倫群 216 6.4 掌握球面 218 6.4.1 自己家 218 6.4.2 一維球面的基本群 218 6.4.3 二維球面的基本群 219 6.4.4 三維球面的基本群 221 6.4.5 龐加萊猜想 221 6.5 被的形狀 223 6.5.1 確認條件 223 6.5.2 捕捉我所不知道的自己 225 第7章 微分方程的溫度 229 7.1 微分方程 229 7.1.1 音樂教室 229 7.1.2 教室 231 7.1.3 指數函數 236 7.1.4 三角函數 243 7.1.5 微分方程的目的 245 7.1.6 彈簧振動 247 7.2 牛頓冷卻定律 253 第8章 高斯絕妙定理 263 8.1 車站前 263 8.1.1 尤裡 263 8.1.2 讓人驚訝的事 267 8.2 自己家 268 8.2.1 媽媽 268 8.2.2 罕有之物 271 8.3 圖書室 272 8.3.1 泰朵拉 272 8.3.2 理所當然的事 275 8.4 加庫拉 277 8.4.1 米爾嘉 277 8.4.2 傾聽 277 8.4.3 解題 279 8.4.4 高斯曲率 283 8.4.5 絕妙定理 286 8.4.6 齊性和各向同性 288 8.4.7 回禮 289 第9章 靈感與毅力 291 9.1 三角函數訓練 291 9.1.1 靈感與毅力 291 9.1.2 單位圓 292 9.1.3 正弦曲線 296 9.1.4 從旋轉矩陣到兩角和公式 297 9.1.5 從兩角和公式到積化和差公式 298 9.1.6 媽媽 300 9.2 合格判定模擬考 302 9.2.1 不要緊張 302 9.2.2 不要被騙 302 9.2.3 需要靈感還是毅力 305 9.3 看穿算式的形式 311 9.3.1 概率密度函數的研究 311 9.3.2 拉普拉斯積分的研究 317 9.4 傅裡葉展開式 322 9.4.1 靈感 322 9.4.2 傅裡葉展開式 324 9.4.3 超越毅力 329 9.4.4 超越靈感 331 第10章 龐加萊猜想 335 10.1 公開研討會 335 10.1.1 課程結束之後 335 10.1.2 午餐時間 336 10.2 龐加萊 337 10.2.1 形狀 337 10.2.2 龐加萊猜想 339 10.2.3 瑟斯頓的幾何化猜想 343 10.2.4 哈密頓的裡奇流方程 345 10.3 數學家們 346 10.3.1 年表 346 10.3.2 菲爾茲獎 348 10.3.3 千禧年大獎難題 350 10.4 哈密頓 352 10.4.1 裡奇流方程式 352 10.4.2 傅裡葉的熱傳導方程 353 10.4.3 顛覆性的想法 354 10.4.4 哈密頓計畫 356 10.5 佩雷爾曼 359 10.5.1 佩雷爾曼的論文 359 10.5.2 再前進一步 362 10.6 傅裡葉 363 10.6.1 傅裡葉的時代 363 10.6.2 熱傳導方程 364 10.6.3 分離變數法 368 10.6.4 重疊積分 370 10.6.5 傅裡葉積分 371 10.6.6 觀察類似的式子 375 10.6.7 回到裡奇流方程 376 10.7 我們 377 10.7.1 從過去到未來 377 10.7.2 冬天來了 378 10.7.3 春天不遠了 379 尾聲 381 後記 385 參考文獻和導讀 389
結城浩 生於1963年,日本技術作家和程式師。在程式設計語言、設計模式、數學、加密技術等領域,編寫了很多深受歡迎的入門書。代表作有《數學女孩》系列、《程式師的數學》 《圖解密碼技術》等。
最近浏览商品
客服公告
热门活动
订阅电子报