|
最優控制理論中的隨機線性調節器問題--隨機最優線性調節器問題(英文)
|
|
|
|
|
|
|
|
|
ISBN |
9787560399263 |
定价 |
RMB38.00 |
售价 |
RM41.80 |
优惠价 |
RM29.26 * (-30%)
|
作者 |
(孟加拉)MD.阿奇祖爾·巴登
|
出版社 |
哈爾濱工業大學出版社
|
出版日期 |
2022-01-01 |
装订 |
平裝. 無. 167 页. 19. |
库存量 |
購買後立即進貨 下单时可选择“空运”或“海运”(空运和海运需独立下单)。空运费每本书/CD是RM12.00。 空运需时8-11个工作天,海运需时约30个工作天。 (以上预计时间不包括出版社调货的时间以及尚未出版的预购商品) 库存有限或需要调货,订购时间可能延长。如无法订购则将通知进行退款。 |
|
我要订购 有现货时通知我 |
|
放入下次购买清单 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
購買中國簡體書籍請注意:
1. 因裝幀品質及貨運條件未臻完善,中國簡體書可能有出現磨痕、凹痕、折痕等問題,故簡體字館除封面破損、內頁脫落、缺頁等較嚴重的狀態外,其餘所有商品將正常出貨。
|
|
|
|
|
|
|
|
|
目錄
1 Introduction
1.1 Background
1.2 Motivation and objectives of the book
1.3 Layout plan of the book
1.4 Notations
2 Literature Survey
2.1 Introduction
2.2 Literatures on stochastic optimal control problems
2.3 Literature on Bellmans optimality principle or Dynamic program
ming principle
2.4 Works on the Hamilton-Jacobi-Bellman (HJB) equation or Dynamic
programming equation
2.5 Brief survey of literature on viscosity and classical solution of HJB
equation
2.6 Literatures on the existence and development of optimal policies with
reference to cost control
2.7 Concluding remarks
3 Stochastic Differential Equations relating to Stochastic Control The
ory
3.1 Introduction
3.2 Preliminaries
3.2.1 Some definitions
3.2.2 Stochastic integrals
3.2.3 Stochastic differential equations (SDEs)
3.3 Linear control systems
3.4 Optimal control problems
3.4.1 Linear regulator problem
3.4.2 Stochastic control problems in standard forms
3.4.3 The linear-quadratic regulator problem
3.5 Concluding remarks
4 Viscosity Solution of the Degenerate Bellman Equation of Linear
Regulator Control Problem
4.1 Introduction
4.2 Stochastic linear regulator control problem
4.2.1 Problem formulation
4.2.2 The Hamilton-Jacobi-Bellman Equation
4.2.3 Value function
4.3 Viscosity solutions of the Degenerate Bellman Equation
4.3.1 Definition of viscosity solution
4.3.2 Viscosity properties of the value function
4.3.3 Dymnamic programming princtiple
4.4 Convergence of the value function
4.4.1 The value function is a viscosity solution of degenerate Bell
man equation
4.5 Uniqueness of degenerate Bellman equation
4.6 Stability properties of viscosity solutions
4.6.1 The limiting value function is a viscosity solution of degenerate
Bellman equation
4.7 Concluding remarks
5 Existence of Classical Solution of the Degenerate Bellman Equation
and Optimal Control
5.1 Introduction
5.2 Classical or Smooth solution of the degenerate Bellman equation
5.2.1 Convexity of the value function
5.2.2 Smoothness of the value function
5.3 An application to control theory
5.3.1 Optimal control
5.4 Concluding remarks
6 Summary and Conclusions
Bibliography
編輯手記 |
|
|
|
|
|
|
|
|
|
|
|