预购商品
书目分类
特别推荐
本書為美國經典的遺傳學教材《遺傳學》(第10版)的雙語版改編教材。本書根據中國遺傳學教學計畫及各遺傳學教學實際,對原書進行改編,刪除與分子生物學課程重疊的內容,保留經典遺傳學(1—8)章和現代遺傳學進展(17—19章),補充部分遺傳學背景知識,如孟德爾的經典遺傳學文獻、真菌的遺傳分析、細菌的遺傳作圖、病毒的遺傳作圖等。全書對重點章節配有中文翻譯,並補充了中英雙語的高頻遺傳學專業詞彙。此外,本書還將配備網路雙語試題庫供教師和學生學習使用。
1 Introduction to Genetics 1 緒論 1.1 Genetics Has an Interesting Early History 1.1 有趣的遺傳學早期歷史 1.2 Genetics Progressed from Mendel to DNA in Less Than a Century 1.2 從孟德爾到DNA ——遺傳學在一個世紀內的飛速進展 1.3 Discovery of the Double Helix Launched the Era of Molecular Genetics 1.3 DNA 雙螺旋結構的發現開啟了分子遺傳學新紀元 1.4 Development of Recombinant DNA Technology Began the Era of DNA Cloning 1.4 重組DNA 技術的發展開啟了DNA 克隆時代 1.5 The Impact of Biotechnology Is Continually Expanding 1.5 生物技術的影響正持續擴大 1.6 Genomics, Proteomics, and Bioinformatics Are New and Expanding Fields 1.6 基因組學、蛋白質組學和生物資訊學是日益發展的新興領域 1.7 Genetic Studies Rely on the Use of Model Organisms 1.7 遺傳學研究依賴於模式生物的使用 1.8 Genetics Has Had a Profound Impact on Society 1.8 遺傳學對社會已經產生了深遠影響 2 Mitosis and Meiosis 2 有絲分裂和減數分裂 2.1 Cell Structure Is Closely Tied to Genetic Function 2.1 細胞結構與遺傳功能緊密相關 2.2 Chromosomes Exist in Homologous Pairs in Diploid Organisms 2.2 二倍體生物中染色體以同源染色體對的形式存在 2.3 Mitosis Partitions Chromosomes into Dividing Cells 2.3 有絲分裂將染色體分配至分裂細胞中 2.4 Meiosis Creates Haploid Gametes and Spores and Enhances Genetic Variation in Species 2.4 減數分裂產生單倍體配子和孢子並增加了物種的遺傳變異 2.5 The Development of Gametes Varies in Spermatogenesis Compared to Oogenesis 2.5 精子發生與卵子發生中的配子發育差異 2.6 Meiosis Is Critical to Sexual Reproduction in All Diploid Organisms 2.6 減數分裂對於所有二倍體生物的有性生殖都至關重要 2.7 Electron Microscopy Has Revealed the Physical Structure of Mitotic and Meiotic Chromosomes 2.7 電子顯微鏡揭示了有絲分裂和減數分裂過程中的染色體結構 3 Mendelian Genetics 3 孟德爾遺傳學 3.1 Mendel Used a Model Experimental Approach to Study Patterns of Inheritance 3.1 孟德爾使用模型實驗方法研究遺傳模式 3.2 The Monohybrid Cross Reveals How One Trait Is Transmitted from Generation to Generation 3.2 單因數雜交揭示了單一性狀世代傳遞的規律 3.3 Mendel’s Dihybrid Cross Generated a Unique F2 Ratio 3.3 孟德爾雙因數雜交產生獨特的F2 代比例 3.4 The Trihybrid Cross Demonstrates That Mendel’s Principles Apply to Inheritance of Multiple Traits 3.4 三因數雜交表明孟德爾定律適用於多性狀遺傳 3.5 Mendel’s Work Was Rediscovered in the Early Twentieth Century 3.5 孟德爾的工作在20 世紀初被重新發現 3.6 Independent Assortment Leads to Extensive Genetic Variation 3.6 自由組合產生廣泛的遺傳變異 3.7 Laws of Probability Help to Explain Genetic Events 3.7 概率理論有助於解釋遺傳學事件 3.8 Chi-Square Analysis Evaluates the Influence of Chance on Genetic Data 3.8 卡方分析評估偶然性對於遺傳資料的影響 3.9 Pedigrees Reveal Patterns of Inheritance of Human Trait 3.9 系譜圖揭示了人類性狀的遺傳模式 3.10 Tay-Sachs Disease: The Molecular Basis of a Recessive Disorder in Humans 3.10 泰-薩克斯病:人類隱性遺傳疾病的分子基礎 4 Modification of Mendelian Ratios 4 孟德爾比率的擴展 4.1 Alleles Alter Phenotypes in Different Ways 4.1 等位基因通過不同途徑影響表型 4.2 Geneticists Use a Variety of Symbols for Alleles 4.2 遺傳學家使用多種符號表示等位元基因 4.3 Neither Allele Is Dominant in Incomplete, or Partial, Dominance 4.3 在不完全顯性中沒有等位基因是顯性的 4.4 In Codominance, the Influence of Both Alleles in a Heterozygote Is Clearly Evident 4.4 在共顯性中,雜合子兩種等位基因的影響十分明顯 4.5 Multiple Alleles of a Gene May Exist in a Population 4.5 生物種群中可能存在複等位基因 4.6 Lethal Alleles Represent Essential Genes 4.6 致死等位基因體現必需基因 4.7 Combinations of Two Gene Pairs with Two Modes of Inheritance Modify the 9:3:3:1 Ratio 4.7 兩對基因通過兩種遺傳模式進行組合擴展了9 ∶ 3 ∶ 3 ∶ 1 比例 4.8 Phenotypes Are Often Affected by More Than One Gene 4.8 表型通常由一種以上的基因共同決定 4.9 Complementation Analysis Can Determine if Two Mutations Causing a Similar Phenotype Are Alleles of the Same Gene 4.9 互補分析可以判斷引發相似表型的突變是否是同一基因的不同等位基因 4.10 Expression of a Single Gene May Have Multiple Effects 4.10 單基因表達可以產生多種基因效應 4.11 X-Linkage Describes Genes on the X Chromosome 4.11 X連鎖描述位於X 染色體上的基因 4.12 In Sex-Limited and Sex-Influenced Inheritance, an Individual’s Gender Influences the Phenotype 4.12 在限性遺傳和從性遺傳中,個體的性別會影響表型 4.13 Genetic Background and the Environment Affect Phenotypic Expression 4.13 遺傳背景與環境會影響表型表達 4.14 Extranuclear Inheritance Modifies Mendelian Patterns 4.14 核外遺傳豐富了孟德爾遺傳模式 5 Sex Determination and Sex Chromosomes 5 性別決定與性染色體 5.1 X and Y Chromosomes Were First Linked to Sex Determination Early in the Twentieth Century 5.1 20世紀初,X和Y染色體首次確定與性別決定相關 5.2 The Y Chromosome Determines Maleness in Humans 5.2 Y染色體決定人類雄性發育 5.3 The Ratio of Males to Females in Humans Is Not 1.0 5.3 人類男女性別比並非1.0 5.4 Dosage Compensation Prevents Excessive Expression of X-Linked Genes in Humans and Other Mammals 5.4 劑量補償避免人類及其他哺乳類動物X連鎖基因的過量表達 5.5 The Ratio of X Chromosomes to Sets of Autosomes Can Determine Sex 5.5 X染色體數目與常染色體組數的比值可以決定性別 5.6 Temperature Variation Controls Sex Determination in Reptiles 5.6 溫度變化控制爬行動物的性別決定 6 Chromosome Mutations: Variation in Number and Arrangement 6 染色體突變: 染色體數目與結構的變異 6.1 Variation in Chromosome Number: Terminology and Origin 6.1 染色體數目的變異:專業術語與起源 6.2 Monosomy and Trisomy Result in a Variety of Phenotypic Effects 6.2 單體和三體導致不同的表型效應 6.3 Polyploidy, in Which More Than Two Haploid Sets of Chromosomes Are Present, Is Prevalent in Plants 6.3 含兩套以上單倍染色體組成的多倍體在植物界中廣泛存在 6.4 Variation Occurs in the Composition and Arrangement of Chromosomes 6.4 染色體結構和排列順序的變異 6.5 A Deletion Is a Missing Region of a Chromosome 6.5 缺失是染色體上發生丟失的一段區域 6.6 A Duplication Is a Repeated Segment of a Chromosome 6.6 重複是多次出現的染色體片段 6.7 Inversions Rearrange the Linear Gene Sequence 6.7 倒位元將線性基因序列進行重排 6.8 Translocations Alter the Location of Chromosomal Segments in the Genome 6.8 易位改變了基因組中染色體片段的位置 6.9 Fragile Sites in Human Chromosomes Are Susceptible to Breakage 6.9 人類染色體的脆性位點 7 Linkage and Chromosome Mapping in Eukaryotes 7 真核生物的連鎖與染色體作圖 7.1 Genes Linked on the Same Chromosome Segregate Together 7.1 同一染色體上的連鎖基因相伴分離 7.2 Crossing Over Serves as the Basis of Determining the Distance between Genes during Mapping 7.2交換是染色體作圖中確定基因間距離的基礎 7.3 Determining the Gene Sequence during Mapping Requires the Analysis of Multiple Crossovers 7.3 染色體作圖中確定基因順序需要分析多交換事件 7.4 As the Distance between Two Genes Increases, Mapping Estimates Become More Inaccurate6 7.4 隨著基因間距離的增加,染色體作圖的精確性將隨之下降 7.5 Chromosome Mapping Is Now Possible Using DNA Markers and Annotated Computer Databases 7.5 當今,使用DNA 標記和電腦注釋資料庫進行染色體作圖已成為可能 7.6 Other Aspects of Genetic Exchange 7.6 關於遺傳交換的幾點補充 8 Genetic Analysis and Mapping in Bacteria and Bacteriophages 8 細菌和噬菌體的遺傳分析與染色體作圖 8.1 Bacteria Mutate Spontaneously and Are Easily Cultured 8.1 細菌能夠自發突變並易於培養 8.2 Genetic Recombination Occurs in Bacteria 8.2 細菌的基因重組 8.3 The F Factor Is an Example of a Plasmid 8.3 F 因數是一種質粒 8.4 Transformation Is Another Process Leading to Genetic Recombination in Bacteria 8.4 轉化是細菌進行遺傳重組的另一種方式 8.5 Bacteriophages Are Bacterial Viruses 8.5 噬菌體是細菌病毒 8.6 Transduction Is Virus-Mediated Bacterial DNA Transfer 8.6 轉導是由病毒介導的細菌DNA 轉移 9 Epigenetics 9 表觀遺傳學 9.1 Molecular Alterations to the Genome Create an Epigenome 9.1 基因組的分子變化產生了表觀基因組 9.2 Epigenetics and Monoallelic Gene Expression 9.2 表觀遺傳學與單等位基因表達 9.3 Epigenetics and Cancer 9.3 表觀遺傳學與癌症 9.4 Epigenetic Traits Are Heritable 9.4 表觀遺傳性狀具有可遺傳性 9.5 Epigenome Projects and Databases 9.5 表觀基因組計畫與資料庫 10 Genetic Testing 10 遺傳檢測 10.1 Testing for Prognostic or Diagnostic Purposes 10.1 預後檢測和診斷檢測 10.2 Prenatal Genetic Testing to Screen for Conditions 10.2 用於遺傳篩查的產前遺傳檢測 10.3 Genetic Testing Using Allele-Specific Oligonucleotides 10.3 利用等位基因特異的寡核苷酸進行遺傳檢測 10.4 Microarrays for Genetic Testing 10.4 用於遺傳診斷的微陣列 10.5 Genetic Analysis of Individual Genomes by DNA Sequencing 10.5 運用DNA 測序進行個體基因組遺傳分析 10.6 Genome-Wide Association Studies Identify Genome Variations That Contribute to Disease 10.6 全基因組關聯分析鑒定導致疾病的基因組變異 10.7 Genetic Testing and Ethical, Social, and Legal Questions 10.7 遺傳檢測與倫理、社會和法律問題 11 Gene Therapy 11 基因治療 11.1 What Genetic Conditions Are Candidates for Treatment by Gene Therapy? 11.1 哪些遺傳疾病有望使用基因治療? 11.2 How Are Therapeutic Genes Delivered? 11.2 如何傳送治療基因? 11.3 The First Successful Gene Therapy Trial 11.3 首個基因治療成功案例 11.4 Gene Therapy Setbacks 11.4 基因治療的逆境 11.5 Recent Successful Trials by Conventional Gene Therapy Approaches 11.5 傳統基因治療技術的近期成功嘗試 11.6 Genome-Editing Approaches to Gene Therapy 11.6 基因治療中的基因編輯法 11.7 Future Challenges and Ethical Issues 11.7 未來的挑戰及倫理問題 12 Advances in Neurogenetics: The Study of Huntington Disease 12 神經遺傳學進展:亨廷頓病的研究 12.1 The Search for the Huntington Gene 12.1 尋找亨廷頓病基因 12.2 The HTT Gene and Its Protein Product 12.2 HTT 基因與其蛋白質產物 12.3 Molecular and Cellular Alterations in Huntington Disease 12.3 亨廷頓病的分子變化和細胞變化 12.4 Transgenic Animal Models of Huntington Disease 12.4 亨廷頓病的轉基因動物模型 12.5 Cellular and Molecular Approaches to Therapy 12.5 治療的細胞生物學和分子生物學方法 13 DNA Forensics 13 DNA 法醫學 13.1 DNA Profiling Methods 13.1 DNA 分析方法 13.2 Interpreting DNA Profiles 13.2 DNA 圖譜詮釋 13.3 Technical and Ethical Issues Surrounding DNA Profiling 13.3 圍繞DNA 分析的技術與倫理問題 14 Genetically Modified Foods 14 轉基因食品 14.1 What Are GM Foods? 14.1 什麼是轉基因食品? 14.2 Methods Used to Create GM Plants 14.2 構建GM 植物的方法 14.3 GM Foods Controversies 14.3 GM 食品之爭 14.4 The Future of GM Foods 14.4 GM 食品的未來 15 Genomics and Precision Medicine 15 基因組學與精准醫療 15.1 Pharmacogenomics 15.1 藥物基因組學 15.2 Precision Oncology 15.2 精准腫瘤學 15.3 Precision Medicine and Disease Diagnostics 15.3 精准醫療與疾病診斷 15.4 Technical, Social, and Ethical Challenges 15.4 技術、社會和倫理的挑戰
威廉· S. 克盧格(William S. Klug) 新澤西學院(前特蘭頓州立學院)的生物學教授。自1974年起連續17年擔任生物系主任。獲得2004年Sigma-Pi國際傑出教授獎,同年,被提名為新澤西州研究與發展委員會的年度教育工作者。
客服公告
热门活动
订阅电子报