预购商品
书目分类
特别推荐
《現代數學基礎叢書》序 序言 前言 第1章 叢模式和叢代數 1 1.1 叢模式和叢代數的定義和例子 1 1.2 量子叢代數的定義和例子 10 1.3 Laurent現象 15 第2章 叢代數的換點陣圖 20 2.1 定義和例子 20 2.2 一些基本結論 23 第3章 叢代數的換位矩陣 26 3.1 符號斜對稱矩陣的完全性 26 3.2 換位矩陣變異的矩陣表達 31 第4章 叢代數的叢同態、子結構和商結構 35 4.1 叢同態和種子同態 35 4.2 叢子代數 41 4.3 叢商代數 43 4.3.1 由賦么化構造的叢商代數 43 4.3.2 由粘合方法刻畫的叢商代數 45 4.4 叢自同構的一個刻畫 48 第5章 叢代數的覆蓋理論和叢變數的正性問題 53 5.1 折疊和展開 53 5.2 無圈符號斜對稱矩陣的強幾乎有限箭圖 56 5.3 無圈符號斜對稱矩陣的展開定理 59 5.4 叢變數Laurent展開的正性問題 60 第6章 叢代數的各類組合參數及相互關係 66 6.1 叢變數的分母向量 66 6.2 c-向量與極大綠色序列 69 6.3 F-多項式和/-向量 73 6.4 向量和G-矩陣 76 6.5 C-矩陣與G-矩陣的關係及相關性質 82 6.6 F-多項式與叢變數、d-向量和化向量之間的關係 90 6.6.1 廣義度 90 6.6.2 關係與關係圖 91 第7章 來自曲面的叢代數 96 7.1 基本概念 96 7.1.1 曲面的三角剖分及翻轉 96 7.1.2 帶標記的三角剖分 99 7.2 來自曲面的叢代數的定義 102 7.3 蛇圖及其完美匹配 106 7.3.1 蛇圖的抽象定義 106 7.3.2 完美匹配及其扭轉 106 7.3.3 蛇圖Gto,r的構造 107 7.3.4 完美匹配集P(Gto,r)的格結構 108 7.4 展開公式 109 7.4.1 A與A(p)的一個叢代數同構 109 7.4.2 不帶標記的弧的情形 111 7.4.3 一端帶標記的弧的情形 114 7.4.4 兩端帶標記的弧的情形 116 7.4.5 注記 117 第8章 有限型和有限變異型叢代數 119 8.1 有限型叢代數 119 8.1.1 有限型叢代數的一個刻畫 119 8.1.2 秩≤2的有限型叢代數分類 120 8.1.3 定理8.1的證明 123 8.2 有限變異型叢代數 125 8.2.1 斜對稱情況 126 8.2.2 可斜對稱化情況 126 第9章 散射圖理論簡介 132 9.1 固定資料 132 9.2 牆 134 9.3 散射圖 135 9.4 胞腔和散射圖的拉回 139 9.5 散射圖的變異 140 9.6 折斷線與Theta函數 143 第10章 叢代數結構的一些基本性質 145 10.1 叢變數的分母向量正性 145 10.1.1 叢代數的足夠滻對性質 146 10.1.2 分母向量正性的證明 150 10.2 真Laurent單項式性質和叢單項式的線性無關性 153 10.3 叢代數的結構唯一性 155 10.3.1 相容性函數與叢的刻畫 155 10.3.2 結構唯一性定理 159 第11章 叢代數的基 162 11.1 一組“好”的基的標準 162 11.2 標準單項式和標準單項式基 163 11.3 膨脹基 166 11.4 三角基 168 11.4.1 Berenstein-Zelevinsky三角基 168 11.4.2 覃三角基 173 11.5 來自曲面的叢代數的基 174 11.5.1 圈鐲集 175 11.5.2 糾結關係與環鏈集 176 11.5.3 鏈帶集 177 11.5.4 叢代數的三個基 178 11.6 Theta函數、Theta基與膨脹基 179 11.6.1 Theta基 179 11.6.2 秩為2時的膨脹基和Theta基的關係 180 11.7 一個總結性圖表 183 第12章 量子重Bruhat胞腔上的量子叢代數結構 185 12.1 預備知識 185 12.1.1 廣義Cartan矩陣與Weyl群 185 12.1.2 重字元 186 12.2 量子包絡代數 187 12.3 李群的量子座標環 189 12.4 矩陣二元組及其相容性 191 12.5 量子重Bruhat胞腔 198 12.6 量子重Bruhat胞腔上的量子叢代數結構 203 第13章 叢範疇與叢代數的範疇化 207 13.1 叢範疇與叢傾斜物件及其變異 207 13.2 三類常用叢範疇 213 13.2.1 軌道範疇 214 13.2.2 廣義叢範疇 215 13.2.3 Probenius 2-Calabi-Yau範疇 217 13.3 叢代數的範疇化及其應用 219 13.3.1 叢特徵 219 13.3.2 向量的範疇化 221 13.3.3 叢的s-向量符號一致性的證明 223 13.3.4 多項式常數項為1的證明 227 第14章 模式與投射線構形 228 14.1 模式的定義及實例 228 14.2 投射線構形的f-模式 231 第15章 全正矩陣的叢代數刻畫 236 15.1 全正矩陣與初始子式 236 15.2 矩陣的雙線圖 237 15.3 主要定理的證明 245 第16章 與數論中若干問題的關係 246 16.1 Markov方程 246 16.2 Somos序列 249 16.3 Fermat數 252 參考文獻 254 索引 263 後記 269 《現代數學基礎叢書》已出版書目 Contents (Fang Li, Min Huang) Foreword Preface 1 Cluster Pattern and Cluster Algebra 1 1.1 Cluster pattern and cluster algebra: Definition and examples 1 1.2 Quantum cluster algebra: Definition and examples 10 1.3 Laurent phenomenon 15 2 Exchange Graphs of Cluster Algebras 20 2.1 Definition and examples 20 2.2 Some basic conclusions 23 3 Exchange Matrices of Cluster Algebras 26 3.1 Totality of sign-skew-symmetric matrices 26 3.2 Matrix formula of mutations of exchange matrices 31 4 Cluster Homomorphisms, Substructure, Quotient Structure of Cluster Algebras 35 4.1 Cluster homomorphisms and seed homomorphisms 35 4.2 Cluster subalgebras 41 4.3 Cluster quotient algebras 43 4.3.1 Cluster quotient algebras constructed from specialization 43 4.3.2 Cluster quotient algebras characterizedvia gluing method 45 4.4 A characterization of cluster automorphisms 48 5 Unfolding Theory for Cluster Algebras and Positivity of Cluster Variables 53 5.1 Folding and unfolding 53 5.2 Strongly almost finite quivers from acyclic sign-skew-symmetric matrices 55 5.3 Unfolding theorem for acyclic sign-skew-symmetric matrices 59 5.4 Positivity for Laurent expansion of a cluster variable 60 6 Combinatorial Parameterization of Cluster Algebras and Their Relationships 66 6.1 Denominator vector of a cluster variable 66 6.2 c-vectors and maximal green sequences 69 6.3 F-polynomials and /-vectors 73 6.4 g-vectors and G-matrices 76 6.5 Relationship between C-matrices and G-matrices and some related properties 82 6.6 Relationship among F-polynomials,d-vectors,g-vectors and cluster variables 90 6.6.1 Generalized degree 90 6.6.2 Relationship and the relation diagram 91 7 Cluster Algebras From Surfaces 96 7.1 Basic concepts 96 7.1.1 Triangulations of surfaces and flips 96 7.1.2 Tagged triangulations 99 7.2 Definition of cluster algebras from surfaces 102 7.3 Snake graphs and their perfect matchings 106 7.3.1 Abstract definition of snake graphs 106 7.3.2 Perfect matchings and twists 106 7.3.3 Construction of snake graphs Gto,r 107 7.3.4 Lattice structure on the set of perfect matchings P(Gto,r) 108 7.4 Expansion formulas 109 7.4.1 A cluster isomorphism from A to 109 7.4.2 Tagged arcs with two ends tagged plain 111 7.4.3 Tagged arcs with one end tagged plain andone end tagged notched 114 7.4.4 Tagged arcs with two ends tagged notched 116 7.4.5 Remark 117 8 Cluster Algebras of Finite Type and Finite Mutation Type 119 8.1 Finitetype cluster algebras 119 8.1.1 A characterization of finite type cluster algebras 119 8.1.2 Classification of finite type cluster algebras of rank ≤2 120 8.1.3 Proof of Theorem 8.1 123 8.2 Finitemutation type cluster algebras 125 8.2.1 Skew-symmetric case 126 8.2.2 Skew-symmetrizable case 126 9 Synopsis of Scattering Diagrams 132 9.1 Fixed data 132 9.2 Walls 134 9.3 Scattering diagrams 135 9.4 Cells and pull-back of scattering diagrams 139 9.5 Mutation of scattering diagrams 140 9.6 Broken lines and Theta functions 143 10 Some Fundamental Properties of the Structure of Cluster Algebras 145 10.1 Positivity for denominator vectors of cluster variables 145 10.1.1 Enough g-pair properties of cluster algebras 146 10.1.2 Proof of the positivity for denominator vectors 150 10.2 Proper Laurent monomial property and linear independence of cluster monomials 153 10.3 Unistructurality of cluster algebras 155 10.3.1 Compatible functions and characterization of clusters 155 10.3.2 Unistructurality Theorem I59 11 Bases for Cluster Algebras 162 11.1 Some standards for “good” bases 162 11.2 Standard monomials and standard monomial basis 163 11.3 Greedy basis 166 11.4 Triangular basis 168 11.4.1 Berenstein-Zelevinsky,s triangular basis 168 11.4.2 Qin's triangular basis 173 11.5 Bases for cluster algebras from surfaces 174 11.5.1 Bangle set 175 11.5.2 Skein relation and bracelet set 176 11.5.3 Band set 177 11.5.4 Three bases for cluster algebras 178 11.6 Theta functions, Theta basis and greedy basis 179 11.6.1 Theta basis 179 11.6.2 Relationship between greedy basis and Theta basis for cluster algebras of rank 2 180 11.7 A summary table 183 12 Structure of Quantum Cluster Algebras on Quantum Double Bruhat Cells 185 12.1 Preliminaries 185 12.1.1 Generalized Cartan matrices and Weyl groups 185 12.1.2 Double words 186 12.2 Quantumenveloping algebras 187 12.3 Quantumcoordinate rings of Lie groups 189 12.4 Matrices pair and its compatibility 191 12.5 Quantumdouble Bruhat cells 198 12.6 Quantumcluster algebras on double Bruhat cells 203 13 Cluster Categories and Additive Categorification 207 13.1 Cluster categories, cluster tilting objects and their mutations 207 13.2 Three kinds of cluster categories 213 13.2.1 Orbit categories 214 13.2.2 Generalized cluster categories 215 13.2.3 Frobenius 2-Calabi-Yau categories 217 13.3 Categorifications of cluster algebras and their applications 219 13.3.1 Cluster characters 219 13.3.2 Categorification of g-vectors 221 13.3.3 Proof of sign-coherence of g-vectors of a cluster 223 13.3.4 Proof of that F-polynomials have constant terms 1 227 14 Y-pattern and Configurations of Projective Lines 228 14.1 Y -pattern: Definition and examples 228 14.2 Y -patterns from configurations of projective lines 231 15 Cluster Algebra Structure on Totally Positive Matrices 236 15.1 Totally positive matrices and initial minors 236 15.2 Double wiring diagrams for matrices 237 15.3 Proof of the main theorem 245 16 Connection with Some Problems in Number Theory 246 16.1 Markov equation 246 16.2 Somos sequences 249 16.3 Fermat numbers 252 References 254 Index 263 Postscript 269
最近浏览商品
客服公告
热门活动
订阅电子报