|
正交分解法--渦流流體動力學應用的正交分解法(英文)
|
|
|
|
|
|
|
|
|
ISBN |
9787560399270 |
定价 |
RMB38.00 |
售价 |
RM41.80 |
优惠价 |
RM29.26 * (-30%)
|
作者 |
(羅)戴安娜·愛麗娜·比斯蒂安
|
出版社 |
哈爾濱工業大學出版社
|
出版日期 |
2022-01-01 |
装订 |
平裝. 無. 171 页. 19. |
库存量 |
海外库存 下单时可选择“空运”或“海运”(空运和海运需独立下单)。空运费每本书/CD是RM12.00。 空运需时8-11个工作天,海运需时约30个工作天。 (以上预计时间不包括出版社调货的时间以及尚未出版的预购商品) |
|
我要订购 有现货时通知我 |
|
放入下次购买清单 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
購買中國簡體書籍請注意:
1. 因裝幀品質及貨運條件未臻完善,中國簡體書可能有出現磨痕、凹痕、折痕等問題,故簡體字館除封面破損、內頁脫落、缺頁等較嚴重的狀態外,其餘所有商品將正常出貨。
|
|
|
|
|
|
|
|
|
目錄
1 Introduction
2 Mathematical issues on hydrodynamic stability of swirling flows
2.1 Linearized disturbance equations
2.2 The method of normal modes analysis
2.3 Definition of temporal and spatial instability
2.4 Studies upon stability of swirling flows cited in literature
3 Mathematical model for a swirling system - a Francis turbine runner case
3.1 Discrete operator formulation of the hydrodynamic model
3.2 Axis and wall boundary conditions
4 Orthngonal decomposition method for stability eigenvalue problems
4.1 Motivation of using the spectral methods in hydrodynamic stability problems
4.1.1 The L2 -Projection method
4.1.2 The collocation method
4.2 0rthogonal polynomial decomposition base
4.2.1 Considerations on shifted Chebyshev polynomials
4.2.2 Orthogonality of the shifted Chebyshev polynomials
4.2.3 Evaluation of the shifted Chebyshev derivatives
4.3 Computational domain and grid setup
5 Numerical approach for non-axisymmetrie stability investigation
5.1 Boundary adapted decomposition
5.1.1 Description of the method
5.1.2 Interpolative derivative matrix
5.1.3 Implementation of the boundary adapted decomposition
5.2 Summary of this chapter
6 Numerical approach for axisymmetric and bending modes stability investigation
6.1 A modified L2-Projection method based on orthogonal decomposition
6.1.1 Description of the method
6.1.2 Implementation of the projection method using symbolic and numeric conversions
6.2 Summary of this chapter
7 Spectral descriptor technique for hydrodynamic stability of swirling flows
7.1 The analytical investigation of the eigenvalue problem
7.2 Numerical approach based on collocation technique
7.2.1 Interpolative derivative operator
7.2.2 Parallel implementation of the spectral collocation algorithm
7.3 Summary of this chapter
8 Validation of the numerical procedures on a Q-vortex problem
8.1 The Q-vortex profile
8.2 Radial boundary adapted method validation and results
8.3 L2 -Projection method validation and results
8.4 Spectral descriptor method validation and results
8.5 Comparative results
9 Parallel and distributed investigation of the vortex rope model
9.1 Considerations about parallel computing
9.2 Theoretical model and computational domain
9.3 Influence of discharge coefficient on hydrodynamic stability
9.3.1 Investigation of axisymmetric mode
9.3.2 Investigation of bending modes
9.4 Study of absolute and convective instability of the swirl system with discrete velocity profiles
9.4.1 Computational aspects
9.4.2 Validations with experimental results
9.5 Accuracy and convergence of the algorithm
9.6 Evaluation of the parallel algorithm performance
9.7 Summary of this chapter
10 Conclusions
10.1 Book summary
10.2 Final remarks
Bibliography and references
編輯手記 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
戴安娜·愛麗娜·比斯蒂安
羅馬尼亞人,在羅馬尼亞的蒂米什瓦拉西部大學學習數學和計算機科學。她是理學學士,後獲得了蒂米什瓦拉西部大學的計算機和資訊技術博士學位。她的研究方向為計算數學和渦流流體動力的數值方法。 |
|
|
|
|
|
|
|
|
|
|
|