预购商品
书目分类
特别推荐
Electromagnetic Compatibility (EMC) utilizes dedicated theory and technologies to predict, assess and prevent potential electromagnetic interference problems. After giving a brief overview of EMC and the related topics, this book explains basic EMC knowledge, including the properties of potential noise sources, distributed parameters, and modeling methods. Some prerequisites of EMC study, including the electromagnetic theory and signal analysis are also illustrated in a practical viewpoint. Then it discusses the coupling mechanisms, and introduces the electromagnetic interference (EMI) mitigation techniques, what left are application-oriented EMC testing and design topics. To better explain mysterious EMC phenomenon, this book was written with practical cases, and with a hierarchical methodology. It combines experiences and results from years of research by the authors and best practices of international colleagues, makes it an ideal textbook for graduate students, as well as a beneficial reference for researchers and engineers in the area of electronics, electrical engineering, etc.
Chapter 1 Introduction to EMC 1 1.1 What is EMC 1 1.1.1 The Four Aspects of EMC problems 2 1.1.2 EMC-related Issues and Accidents 2 1.2 Basic Interference Sources 4 1.3 Basic Coupling Mechanisms 5 1.4 Basic Sensitive Equipment 7 1.4.1 Typical Sensitive Equipment 7 1.4.2 Susceptibility of Sensitive Equipment 9 1.5 Overview of EMI Control Techniques 11 1.6 EMC Foundations 15 1.7 References 16 1.8 Quiz 17 Chapter 2 Classification of Noise Sources 18 2.1 General Classification of Noise Sources 18 2.2 The Fourier Transform 19 2.3 Fourier Spectrum of Base Band Signals 22 2.3.1 Single Trapezoid 22 2.3.2 Pulse Trains 23 2.3.3 Double Exponential Pulses 24 2.4 Fourier Spectrum of Modulated Signals 26 2.4.1 Analog Modulation 27 2.4.2 Digital Modulation 28 2.5 References 31 2.6 Quiz 31 Chapter 3 Distributed Parameters 34 3.1 Review of Electromagnetic Theory 34 3.2 Review of Resistance Concepts 38 3.2.1 Basic Definitions 38 3.2.2 Self and Mutual Conductance 41 3.2.3 Grounding Resistance 43 3.2.4 Alternating Current Distributions 44 3.3 Review of Inductance Concepts 45 3.3.1 Basic Definition of Inductance 45 3.3.2 Calculation of Inductances 47 3.3.3 High Frequency Behaviors 50 3.4 Review of Capacitance Concepts 52 3.4.1 Basic Definition of Capacitance 52 3.4.2 Calculation of Capacitance 53 3.4.3 Grounded Floating and Shielded Conductors 55 3.4.4 High Frequency Behaviors 56 3.5 References 57 3.6 Quiz 58 Chapter 4 Modeling for EMC 59 4.1 Models and Modeling 59 4.1.1 Role of Models in EMC 59 4.1.2 Modeling Methods for EMC 60 4.2 Modeling of Nonlinearity 65 4.2.1 Power Series 65 4.2.2 Volterra Series 66 4.3 References 68 4.4 Quiz 69 Chapter 5 Field-field Coupling 70 5.1 Principle of Radiative Coupling 70 5.2 Near and Far Field Zones 72 5.3 Elementary Radiators 73 5.3.1 Dipole Antenna ( Electric Current Based Radiator) 73 5.3.2 Loop Antenna ( Magnetic Current Based Radiator) 74 5.3.3 Aperture Antenna ( Huygens Source) 74 5.4 Important Antenna Parameters 75 5.5 Isolation between Antennas 81 5.5.1 Friis Transmission Equation 81 5.5.2 Modified Friis Transmission Equation 82 5.5.3 Isolation on Platform 82 5.6 References 85 5.7 Quiz 86 Chapter 6 Wire-wire Coupling 87 6.1 Galvanic Coupling 87 6.1.1 Principle of Galvanic Coupling 87 6.1.2 Two-port Galvanic Coupling Network 89 6.2 Inductive Coupling 92 6.2.1 Principle of Inductive Coupling 92 6.2.2 Two-port Inductive Coupling Network 92 6.2.3 Calculation of Mutual Inductance 94 6.3 Capacitive Coupling 95 6.4 Generalized Weak Coupling 98 6.5 References 98 6.6 Quiz 98 Chapter 7 Transmission Line Coupling 99 7.1 Review of Transmission Line Theory 99 7.1.1 Telegraphers Equations 99 7.1.2 Reflections on Transmission Lines 103 7.2 Transmission Line Coupling 104 7.2.1 Coupling between Transmission Lines 104 7.2.2 Effects of Mutual Coupling 107 7.3 Multi-conductor Transmission Lines 108 7.3.1 Generalized Telegraphers Equations 108 7.3.2 Special Solutions of MTL Formulation: Degenerated Modes 111 7.3.3 General Solutions of MTL Formulation: Normal Modes 116 7.4 References 119 7.5 Quiz 120 7.6 Source Code 121 Chapter 8 Field-wire Coupling 123 8.1 Multi-conductor Transmission Line Equation 124 8.1.1 The Equation Associated with Distributed Source 124 8.1.2 Description of the Distributed Sources 126 8.2 Analysis of Cables 130 8.2.1 Twisted Line 130 8.2.2 Shielded Line 135 8.3 Penetration Field 138 8.4 References 140 8.5 Quiz 141 8.6 Source Code 141 Chapter 9 Signal Balancing 144 9.1 Differential Mode and Common Mode 144 9.1.1 Coaxial line 144 9.1.2 Coupled Microstrip Line 145 9.1.3 Parallel Line 145 9.2 Signal Balancing Methods 147 9.2.1 Overview 147 9.2.2 CM Suppressing Transformers 150 9.3 References 152 9.4 Quiz 152 Chapter 10 Grounding and Decoupling 153 10.1 Elements of Proper Grounding 153 10.1.1 Concept 153 10.1.2 Classification 155 10.1.3 Minimum Impedance Path 156 10.2 Grounding Methods 160 10.2.1 Single Point and Multipoint Grounding 160 10.2.2 Cable Grounding 163 10.2.3 Grounding for EMI Reduction 164 10.3 Decoupling 170 10.3.1 Concept of Decoupling 170 10.3.2 Hierarchical Decoupling 173 10.4 References 173 10.5 Quiz 173 Chapter 11 Electromagnetic Shielding 175 11.1 Concepts of Electromagnetic Shielding 175 11.1.1 Overview of Electromagnetic Shielding 175 11.1.2 Classification of Electromagnetic Shielding 176 11.1.3 Hierarchy of Electromagnetic Shielding 178 11.2 Planar Plate 179 11.2.1 High Frequency Shielding 179 11.2.2 Low Frequency Shielding 181 11.2.3 Low and High Frequency Shielding 184 11.3 Planar Plate with Holes 184 11.3.1 Small Holes 184 11.3.2 Cut-off Waveguide 186 11.4 Enclosures for Equipment 187 11.4.1 Rectangular Enclosures 187 11.4.2 Resonance of the Enclosures 190 11.5 Aircraft Fuselage and Car Chassis 191 11.5.1 Over Mode Cavity Theory 192 11.5.2 Extended Theory for Composite Materials 196 11.6 References 197 11.7 Quiz 197 11.8 Source Code 199 Chapter 12 Filters and Surge Protectors 201 12.1 The Classification of Filters 201 12.2 Passive EMI Filters 205 12.2.1 Second Order Low Pass Filters 205 12.2.2 Third Order Low Pass Filters 205 12.3 Active Filter Circuits 206 12.3.1 Operating Principles 206 12.3.2 Insertion Loss 211 12.4 Surge Protector 214 12.4.1 Overview 214 12.4.2 Design Considerations 216 12.5 References 219 12.6 Quiz 219 Chapter 13 Electromagnetic Absorbers 221 13.1 Introduction 221 13.2 Planar Absorbing Materials 221 13.2.1 Analysis Method 221 13.2.2 Two Planar Absorbers 223 13.3 Applications of Electromagnetic Absorbers 224 13.3.1 Reduce the Q Factors of Metallic Cavity 224 13.3.2 Improve the Shielding Effectiveness of Metallic Chassis 226 13.4 References 228 13.5 Quiz 228 Chapter 14 Testing for EMC 229 14.1 The Four Items of EMC Testing 229 14.2 EMC Testing Standards 233 14.2.1 Classification of Standards 233 14.2.2 Selected Standards 234 14.3 RE and RS Testing 237 14.3.1 Introduction 237 14.3.2 RE and RS Related Antenna Parameters 239 14.3.3 Wave Propagation in Testing Facilities 242 14.3.4 Reception of Weak Signals 247 14.4 CE and CS Testing 249 14.4.1 Introduction 250 14.4.2 Line Impedance Stabilization Network 252 14.4.3 Current Probes 254 14.5 References 257 14.6 Quiz 258 14.7 Source Code 258 Chapter 15 EMC Design 259 15.1 Purpose of EMC Design 259 15.2 Electromagnetic Topology 262 15.3 Systematic EMC Design 266 15.4 References 271 15.5 Quiz 271 Appendix A Review of Circuit Analysis 273 Appendix B Wireless Communications 282 Appendix C Dimensions in EMC 288 Appendix D Abbreviations and Acronyms 289
吳琦 北京航空航太大學教授、博士生導師、電磁相容與電磁環境系主任,某創新團隊負責人,曾獲全 國優 秀博士學位論文評選提名,並被授予“青年長江學 者”稱號。2009年博士畢業于上海交通大學(師從IEEE Fellow金榮洪教授),同年加入北航任教。曾任美國加州大學洛杉磯分校訪問學 者和德國漢堡工業大學客座教授。現擔任中國電子學會電磁相容分會委員、URSI-B中國分會委員。 吳琦教授主要從事天線與電磁相容領域的教學和研究工作,發表SCI收錄期刊論文40餘篇,出版學術作品2部,獲 發明專利授權20余項。 蘇東林 北京航空航太大學教授、博士生導師,中國工程院院士。享受 政府特殊津貼,獲五一勞動獎章、創新爭先獎及“全 國巾幗建功標兵”“北京市優 秀共產黨員”稱號。中國電子學會天線分會副主任委員、電磁環境效應專 家委員會主任委員,以及IEEE-AP北京分會 、URSI-B中國分會 等。長期致力於電磁相容基礎理論研究、關鍵技術攻關、重大裝備研製,做了系統性、創新性工作。曾獲 技術發明獎一等獎1項、 科技進步獎二等獎2項。
客服公告
热门活动
订阅电子报