预购商品
书目分类
特别推荐
第一階段 自動計算微分 STEP 1 把變數當成箱子 STEP 2 產生變數的函數 STEP 3 連結函數 STEP 4 數值微分 STEP 5 誤差反向傳播法的理論 STEP 6 手動執行誤差反向傳播法 STEP 7 誤差反向傳播法的自動化 STEP 8 從遞迴到迴圈 STEP 9 讓函數更方便 STEP 10 測試 第二階段 用自然的程式碼呈現 STEP 11 可變長度引數(正向傳播篇) STEP 12 可變長度引數(改善篇) STEP 13 可變長度引數(反向傳播篇) STEP 14 重複使用相同變數 STEP 15 複雜的計算圖(理論篇) STEP 16 複雜的計算圖(執行篇) STEP 17 記憶體管理與循環參照 STEP 18 減少記憶體用量的模式 STEP 19 輕鬆使用變數 STEP 20 運算子多載(1) STEP 21 運算子多載(2) STEP 22 運算子多載(3) STEP 23 整合成套件 STEP 24 複雜函數的微分 第三階段 計算高階微分 STEP 25 計算圖視覺化(1) STEP 26 計算圖視覺化(2) STEP 27 泰勒展開式的微分 STEP 28 函數最佳化 STEP 29 使用牛頓法最佳化(手動計算) STEP 30 高階微分(準備篇) STEP 31 高階微分(理論篇) STEP 32 高階微分(執行篇) STEP 33 使用牛頓法最佳化(自動計算) STEP 34 sin 函數的高階微分 STEP 35 高階微分的計算圖 STEP 36 高階微分以外的用途 第四階段 建立類神經網路 STEP 37 處理張量 STEP 38 改變形狀的函數 STEP 39 加總函數 STEP 40 進行廣播的函數 STEP 41 矩陣乘積 STEP 42 線性迴歸 STEP 43 類神經網路 STEP 44 整合參數層 STEP 45 整合各層的整合層 STEP 46 用 Optimizer 更新參數 STEP 47 Softmax 函數與交叉熵誤差 STEP 48 多值分類 STEP 49 Dataset 類別與事前處理 STEP 50 取出小批次的 DataLoader STEP 51 MNIST 的學習 第五階段 使用DeZero 進行挑戰 STEP 52 支援 GPU STEP 53 儲存與載入模型 STEP 54 Dropout 與測試模式 STEP 55 CNN 的機制(1) STEP 56 CNN 的機制(2) STEP 57 conv2d 函數與 pooling 函數 STEP 58 具代表性的 CNN(VGG16) STEP 59 用 RNN 處理時間序列資料 STEP 60 LSTM 與 DataLoader APP A 原地演算法(STEP 14 的補充說明) APP B 執行get_item 函數(STEP 47 的補充說明) APP C 在 Google Colaboratory 執行
客服公告
热门活动
订阅电子报