|
|
|
|
|
|
|
|
ISBN |
9789863125150 |
定价 |
NT680 |
售价 |
RM106.30 |
作者 |
加嵜長門,田宮直人
|
译者 |
朱浚賢 |
出版社 |
旗標
|
出版日期 |
2018-05-14 |
装订 |
平裝. 單色印刷. 512 页. 23. |
库存量 |
本商品已絕版無法銷售 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
【關鍵數據分析指標】解說 + 【SQL 擷取、彙總數據】手法,
教你從枯燥的資料表中挖出對決策有幫助的資訊!
在一般使用上,SQL 還是常被當作 Web 服務的後端,只用於 RDB(關聯式資料庫)的查詢,普遍缺乏將 SQL 使用在分析用途上的 Knowhow。然而目前各種大數據平台 (Apache Hadoop、Spark、Google / Amazon 的付費雲端平台…) 的盛行,當中都少不了運用 SQL 查詢語法來擷取、分析平台上所儲存的數據,取得重要的決策資訊。
本書涵蓋大數據平台上的 SQL 分析工具 (Apache Hive、SparkSQL、Google BigQuery、Amazon Redshift、PostgreSQL),以滿滿的商業分析實例,教你從看似千篇一律的網站 Log、營收數據「挖寶」,其中包括【營收狀況分析】、社群/內容/購物網站的【使用者行為分析】、【網站營運績效分析】等,會先介紹可派上用場的分析指標,接著示範如何以 SQL 語法來取得這些指標所需的數據。
本書期望提供大數據分析相關知識給分析人員與工程師,養成實務上所需的技術力與分析力,成為活用數據、改善公司業務的關鍵人才!
●【實用分析指標解說,養成必備數據分析力】
【營收狀況分析】
判讀營收的變化趨勢 → Z 圖表
依營收貢獻度將商品劃分等級,判別銷售情形 → ABC 分析
精準掌握商品成長或衰退情形 → Fan chart
【社群網站、內容網站、購物網站...的使用者行為分析】
區分重度、輕度使用者,客製化服務內容 → 十分位分析、RFM 分析
調查使用者的傾向 → 留存率、回訪率
彙總用戶消費額,估算集客的合理成本 → ARPU 指標、LTV 指標
【網站營運績效分析】
評估網頁的內容是否夠吸引人 → 離開率、讀完率
檢測申請表單的效用,避免申請到一半離開 → 表單跳脫率
本書特色
●技術力 X 分析力 的完美結合!IT、企劃分析、行銷人員一定要會的大數據分析術!
●以 split_part / URL / COALESCE / CONCAT / SIGN / greatest / least / NTILE / SUM ...等函數撰寫 SQL 查詢語法 (Query),輕鬆獲得各項分析指標數據
●涵蓋熱門大數據分析平台,Apache Hive / Google BigQuery / SparkSQL / Amazon Redshift / PostgreSQL 全適用 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
目錄
第 1 章 大數據時代需要的分析力
1-1 數據分析環境的變化
1-2 大數據衍生的各種課題
第 2 章 本書所使用的工具與數據
2-1 本書所使用的系統
2-2 本書所使用的數據類型
第 3 章 使用 SQL 整理數據
3-1 單一數值的整理
3-2 多個數值的整理
3-3 對單一資料表進行操作
3-4 對複數資料表進行操作
第 4 章 營收狀態相關數據的彙總、分析
4-1 沿著時間軸蒐集數據
4-2 多面向的蒐集數據
第 5 章 使用者行為相關數據的彙總、分析
5-1 發掘全體使用者的特徵、傾向
5-2 找出全體使用者在時間軸上的變化
5-3 沿著時間軸分析使用者的個別行為
第 6 章 網站指標相關數據的彙總、分析
6-1 發掘網站的全體特徵
6-2 掌握網站內的使用者行為
6-3 申請表單的最佳化
第 7 章 提高數據使用的精確度
7-1 組合數據, 建立新的切入點
7-2 檢出異常值
7-3 檢出重複的數據
7-4 比較多個資料集
第 8 章 進階數據活用術
8-1 評估並改善搜尋功能
8-2 資料探勘(Data Mining)
8-3 推薦系統
8-4 計算分數
第 9 章 總結:活用知識採取行動 |
|
|
|
|
|
|
|
|
|
|
|