|
|
|
|
|
|
|
|
ISBN |
9789865021894 |
定价 |
NT500 |
售价 |
RM78.10 |
优惠价 |
RM69.51 *
|
作者 |
寺田學,辻 真吾,鈴木たかのり,福島真太朗
|
译者 |
許郁文 |
出版社 |
碁峰
|
出版日期 |
2019-07-17 |
装订 |
平裝. 雙色印刷. 332 页. 23. |
库存量 |
海外库存 抱歉!此书没有开放空运服务,只能船运,需时约30个工作天。如需空运请洽客服。 |
|
有现货时通知我 |
|
放入下次购买清单 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
幫助您在最短的時間內學到資料科學必備的技術與基礎知識
本書的目標族群是想成為資料分析工程師的讀者、對Python有一定程度了解的工程師。所謂「有一定程度了解」,指的是能讀懂Python官方手冊的程度,本書只介紹最低限度所需的Python語法與規格。至於資料分析方法,會使用NumPy或pandas介紹處理資料的方法,接著會介紹以Matplolib具體呈現資料的方法,最後再解說以scikit-learn進行機器學習的分類或預測的方法。除了工具的使用方式之外,也會解說基礎的數學知識。
搞懂資料分析與機器學習必懂的數學知識
要分析資料或是進行機器學習,就必須具備相關的數學知識,所以本書將從數學公式開始講解,直到大家能了解數學公式為止。再者,實際分析資料時,收集資期待各位讀者能透過本書全面地學習資料分析,進而踏出成為資料分析工程師的第一步。
.資料分析必備的基礎數學知識
.基本的Python語法
.使用NumPy或pandas處理資料的方法
.利用Matplolib進行資料視覺化的方法
.以scikit-learn進行機器學習的分類或預測
.實作網路爬蟲
.實作自然語言處理
.實作影像分類
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
目錄
Chapter 1 資料分析工程師所扮演的角色
1.1 資料分析的世界
1.2 機械學習的定位與流程
1.3 主要用於資料分析的套件
Chapter 2 Python與環境
2.1 建置執行環境
2.2 Python的基礎
2.3 Jupyter Notebook
Chapter 3 數學的基礎
3.1 閱讀公式所需的基礎知識
3.2 線性代數
3.3 基礎解析
3.4 機率與統計
Chapter 4 利用函式庫分析
4.1 NumPy
4.2 pandas
4.3 Matplotlib
4.4 scikit-learn
Chapter 5 進階:資料的收集與加工
5.1 網路爬蟲
5.2 自然語言的處理
5.3 圖檔處理 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
作者簡介
寺田學
目前主要是提供Python Web相關的諮詢與建置手法。從2010年開始積極從事日本國內Python社群的活動,也盡力舉辦PyCon JP。2013年3月開始擔任一般社團法人PcCon JP代表理事,目前也主辦其他OSS相關社群或是擔任相關社群的工作人員。為了說明Python的魅力,最近也全心全意擔任初學者課程與機械學習領域的Python講師。
辻 真吾
研究所畢業後,於IT創投企業服務,但不到三年就離職。回歸博士課程,從事生物資訊科學的研究。目前隸屬東京大學先端科學技術研究中心Genome Science領域。從2015年開始主辦Start Python Club,每個月舉辦一次每個人都可參考的『大家的Python讀書會』。
鈴木たかのり
為了建立部內網站而與Zope/Plone相遇,有需要的時候就會使用Python。2011年1月擔任PyCon mini JP的工作人員,2014年~2016年擔任PyCon JP座長。其他的主要活動有擔任Python攀岩部(#kabepy)部長與主辦Python mini Hack-a-thon(#pyhack)。
福島真太朗
研究所時期開始利用C語言與C++語言進行非線性力學的數值計算,進入社會後,從事機械學習、資料剖析的工作,才與Python(與R)相遇。目前在株式會社TOYOTA IT開發中心利用Python與Julia進行工廠感測器資料、車輛資料、影像資料、物理性質、材料資料的剖析。 |
|
|
|
|
|
|
|
|
|
|
|