预购商品
书目分类
特别推荐
本書主要介紹了基於LED的水下可見光通信的技術原理。全書共分為8章,第1章給出了水下可見光通信的基本概念和研究現狀,同時介紹了水下可見光通信的系統結構;第2~8章分別從水下通道建模、調製方式、均衡技術、水下MIMO光通信技術以及水下可見光通信的機器學習演算法等方面介紹了實現水下可見光通信所採用的技術和關鍵演算,同時給出了作者所在研究團隊基於本書介紹的技術理論取得的實驗成果。本書適合從事通信領域研究尤其是水下可見光通信研究的工程技術人員,以及高等院校通信工程等相關專業的研究生和教師閱讀。
第1章 概述 001 1.1 引言 002 1.2 研究現狀 004 1.3 水下可見光通信系統結構 006 1.4 本章小結 007 參考文獻 008 第2章 水下通道建模 011 2.1 海水的吸收和散射特性 012 2.1.1 海水的固有光學特性 013 2.1.2 海水通道的光學吸收特性 013 2.1.3 海水通道的光學散射特性 020 2.1.4 海水通道的總衰減特性 024 2.2 海水通道光傳輸散射特性的蒙特卡洛模擬 025 2.2.1 海水通道中光傳輸散射效應 026 2.2.2 海水通道中光傳輸散射相位函數 027 2.2.3 海水通道中光傳輸散射特性的蒙特卡洛模擬 029 2.3 基於蒙特卡洛統計方法的水下傳輸時域展寬特性 033 2.3.1 光信號在水下傳輸的時域特性分析 033 2.3.2 光脈衝信號在水下傳輸的時域展寬模型 038 2.4 水下無線光通信空域光斑擴展模型分析 043 2.5 水下LED無線光信號傳輸模型及實驗分析 044 2.6 本章小結 046 參考文獻 046 第3章 LED發射光學系統 049 3.1 非成像光學理論基礎 050 3.1.1 非成像光學 050 3.1.2 非成像光學的發展 051 3.1.3 非成像光學系統 051 3.1.4 光學擴展量理論 051 3.2 非成像光學設計方法 054 3.3 LED發射准直光學設計 058 3.3.1 LED光學特性 058 3.3.2 發射准直天線設計 061 3.4 本章小結 066 參考文獻 066 第4章 LED光學接收、探測及處理系統 069 4.1 LED接收機結構概述 070 4.2 LED接收光學天線特性分析 070 4.2.1 菲涅耳透鏡 071 4.2.2 複合抛物面聚光器 079 4.3 高靈敏單光子探測及處理技術 083 4.3.1 高靈敏單光子探測器 083 4.3.2 單光子探測面臨的主要問題 090 4.3.3 單光子信號檢測技術 091 4.4 水密封艙體結構 092 4.5 本章小結 093 參考文獻 094 第5章 水下高速光通信調製方式 097 5.1 高速高譜效率調製的實現途徑 098 5.2 單載波調製技術 100 5.2.1 通斷鍵控 100 5.2.2 無載波幅度相位調製 102 5.3 多載波調製技術 108 5.3.1 正交頻分複用技術調製與解調原理 109 5.3.2 離散多音訊調製 117 5.3.3 DFT-S OFDM調製 118 5.3.4 水下實驗 123 5.4 幾何整形 130 5.4.1 幾何整形8-QAM 130 5.4.2 幾何整形16-QAM 133 5.4.3 應用 135 5.5 概率整形 137 5.5.1 麥克斯韋 玻爾茲曼分佈 137 5.5.2 歸一化廣義互資訊 139 5.5.3 概率幅度整形 140 5.5.4 實際應用 141 5.6 本章小結 145 參考文獻 145 第6章 水下光通信非線性均衡技術 147 6.1 基於Volterra級數的非線性均衡 148 6.2 基於多項式的非線性均衡 150 6.3 基於非線性自我調整濾波器的水下可見光通信實驗 151 6.4 本章小結 153 參考文獻 155 第7章 水下MIMO光通信技術 157 7.1 多輸入單輸出系統 158 7.1.1 等概率預編碼PAM7調製的2×1 MISO水下可見光通信系統 158 7.1.2 利用DBSCAN的機器學習演算法增強PAM7 MISO UVLC系統性能 163 7.2 單輸入多輸出系統 170 7.2.1 採用等增益合併技術集成PIN陣列的水下可見光通信系統 170 7.2.2 基於接收 比合併的多PIN高速水下可見光通信系統 176 7.3 多輸入多輸出系統 183 7.3.1 基於簡化空時分組編碼技術的可見光MIMO傳輸實驗 184 7.3.2 基於雙邊帶獨立信號非線性串擾消除演算法的光纖大容量傳輸實驗 188 7.3.3 疊加編碼在MIMO VLC系統中的技術研究 194 7.4 本章小結 200 參考文獻 201 第8章 水下可見光通信的機器學習演算法 203 8.1 基於無監督的聚類演算法 204 8.1.1 K-Means演算法 204 8.1.2 DBSCAN演算法 212 8.1.3 高斯混合模型 219 8.2 基於有監督的支援向量機演算法 226 8.2.1 支持向量機原理 226 8.2.2 基於支援向量機的多頻帶CAP VLC系統相位估計新方案 227 8.2.3 基於支持向量機的車輛照明多路訪問互聯網幾何星座分類的機器學習方案 229 8.3 基於神經網路的演算法 231 8.3.1 神經網路的原理 231 8.3.2 函數連接人工神經網路在水下可見光通信系統中的應用 232 8.3.3 深度神經網路在可見光通信系統通道估計中的應用 238 8.3.4 高斯核深度神經網路在水下可見光通信系統中的應用 247 8.4 本章小結 259 參考文獻 259 名詞索引 265
遲楠 復旦大學教授、博士生導師。長期從事高速光通信和高速可見光通信方面的研究,主要研究高譜效率多維多階光調製技術和數位信號處理技術。 賀鋒濤 西安郵電大學副教授、碩士生導師,陝西省電子學會理事,中國民主同盟盟員。2004年7月于 西安光學精密機械研究所取得博士學位,主要從事物理光學、光電子學教學工作。研究方向有:無線光通信、鐳射高分辨成像、高密度光存儲技術等。 段作梁 西安郵電大學副研究員。主要研究方向有:光學圖像識別技術、超快光子學、高功率寬譜白鐳射產生技術、阿秒脈衝的產生與測量技術、水下無線光信號傳輸技術等。
客服公告
热门活动
订阅电子报